GABA transporters regulate a standing GABAC receptor-mediated current at a retinal presynaptic terminal.

نویسندگان

  • Court Hull
  • Geng-Lin Li
  • Henrique von Gersdorff
چکیده

At the axon terminal of goldfish retinal bipolar cells, GABA(C) receptors have been shown to mediate inhibitory reciprocal synaptic currents. Here, we demonstrate a novel standing GABAergic current mediated exclusively by GABA(C) receptors. Selective inhibition of GAT-1 GABA transporters on amacrine cells increases this tonic current and reveals a specific functional coupling between GAT-1 transporters and GABA(C) receptors. We propose that this GABA(C) receptor-mediated standing current serves to regulate synaptic gain by shunting depolarizing potentials that can produce Ca2+-dependent action potentials at the bipolar cell terminal. Furthermore, we find that the amount of GABA(C) receptor-mediated reciprocal feedback between bipolar cell terminals and amacrine cells is greatly increased when GAT-1 transporters are specifically blocked by NO-711 (1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride). The involvement of GAT-1 transporters in regulating this standing (or tonic) GABA(C) current implicates them in a novel role as major determinants of presynaptic excitability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic inhibition by GABA is mediated via two distinct GABA receptors with novel pharmacology.

Mechanisms of presynaptic inhibition were examined in giant presynaptic terminals of retinal bipolar neurons, which receive GABAergic feedback synapses from amacrine cells. Two distinct inhibitory actions of GABA are present in the terminals: a GABAA-like Cl conductance and a GABAB-like inhibition of voltage-dependent Ca current. Both of the receptors underlying these actions have unusual pharm...

متن کامل

Developmental Regulation and Activity-Dependent Maintenance of GABAergic Presynaptic Inhibition onto Rod Bipolar Cell Axonal Terminals

Presynaptic inhibition onto axons regulates neuronal output, but how such inhibitory synapses develop and are maintained in vivo remains unclear. Axon terminals of glutamatergic retinal rod bipolar cells (RBCs) receive GABAA and GABAC receptor-mediated synaptic inhibition. We found that perturbing GABAergic or glutamatergic neurotransmission does not prevent GABAergic synaptogenesis onto RBC ax...

متن کامل

GABAC receptor-mediated inhibition in the retina

Inhibition at bipolar cell axon terminals regulates excitatory signaling to ganglion cells and is mediated, in part, by GABAC receptors. We investigated GABAC receptor-mediated inhibition using pharmacological approaches and genetically altered mice that lack GABAC receptors. Responses to applied GABA showed distinct time courses in various bipolar cell classes, attributable to different propor...

متن کامل

Resveratrol Inhibits GABAC ρ Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

Resveratrol is a phytoalexin found in grapes, red wine, and berries. Resveratrol has been known to have many beneficial health effects, such as anti-cancer, neuroprotective, anti-inflammatory, and life-prolonging effects. However, relatively little is known about the effects of resveratrol on the regulation of ligand-gated ion channels. We have previously reported that resveratrol regulates sub...

متن کامل

Activation of the tonic GABAC receptor current in retinal bipolar cell terminals by nonvesicular GABA release.

Within the second synaptic layer of the retina, bipolar cell (BC) output to ganglion cells is regulated by inhibitory input to BC axon terminals. GABA(A) receptors (GABA(A)Rs) mediate rapid synaptic currents in BC terminals, whereas GABA(C) receptors (GABA(C)Rs) mediate slow evoked currents and a tonic current, which is strongly regulated by GAT-1 GABA transporters. We have used voltage-clamp r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 26  شماره 

صفحات  -

تاریخ انتشار 2006